Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 8(330): 330ra35, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-27089204

RESUMO

Sclerostin, an inhibitor of the Wnt/ß-catenin pathway, has anti-anabolic effects on bone formation by negatively regulating osteoblast differentiation. Mutations in the human sclerostin gene (SOST) lead to sclerosteosis with progressive skeletal overgrowth, whereas sclerostin-deficient (Sost(-/-)) mice exhibit increased bone mass and strength. Therefore, antibody-mediated inhibition of sclerostin is currently being clinically evaluated for the treatment of postmenopausal osteoporosis in humans. We report that in chronic TNFα (tumor necrosis factor α)-dependent arthritis, fibroblast-like synoviocytes constitute a major source of sclerostin and that either the lack of sclerostin or its antibody-mediated inhibition leads to an acceleration of rheumatoid arthritis (RA)-like disease in human TNFα transgenic (hTNFtg) mice with enhanced pannus formation and joint destruction. Inhibition of sclerostin also failed to improve clinical signs and joint destruction in the partially TNFα-dependent glucose-6-phosphate isomerase-induced arthritis mouse model, but ameliorated disease severity in K/BxN serum transfer-induced arthritis mouse model, which is independent of TNF receptor signaling, thus suggesting a specific role for sclerostin in TNFα signaling. Sclerostin effectively blocked TNFα- but not interleukin-1-induced activation of p38, a key step in arthritis development, pointing to a previously unrealized protective role of sclerostin in TNF-mediated chronic inflammation. The possibility of anti-sclerostin antibody treatment worsening clinical RA outcome under chronic TNFα-dependent inflammatory conditions in mice means that caution should be taken both when considering such treatment for inflammatory bone loss in RA and when using anti-sclerostin antibodies in patients with TNFα-dependent comorbidities.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Glicoproteínas/antagonistas & inibidores , Inflamação/patologia , Articulações/patologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Marcadores Genéticos , Glucose-6-Fosfato Isomerase/metabolismo , Glicoproteínas/deficiência , Glicoproteínas/metabolismo , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-1/farmacologia , Articulações/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Nat Med ; 21(9): 1085-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26236992

RESUMO

Myostatin (also known as growth and differentiation factor 8) is a secreted member of the transforming growth factor-ß (TGF-ß) family that is mainly expressed in skeletal muscle, which is also its primary target tissue. Deletion of the myostatin gene (Mstn) in mice leads to muscle hypertrophy, and animal studies support the concept that myostatin is a negative regulator of muscle growth and regeneration. However, myostatin deficiency also increases bone formation, mainly through loading-associated effects on bone. Here we report a previously unknown direct role for myostatin in osteoclastogenesis and in the progressive loss of articular bone in rheumatoid arthritis (RA). We demonstrate that myostatin is highly expressed in the synovial tissues of RA subjects and of human tumor necrosis factor (TNF)-α transgenic (hTNFtg) mice, a model for human RA. Myostatin strongly accelerates receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast formation in vitro through transcription factor SMAD2-dependent regulation of nuclear factor of activated T-cells (NFATC1). Myostatin deficiency or antibody-mediated inhibition leads to an amelioration of arthritis severity in hTNFtg mice, chiefly reflected by less bone destruction. Consistent with these effects in hTNFtg mice, the lack of myostatin leads to increased grip strength and less bone erosion in the K/BxN serum-induced arthritis model in mice. The results strongly suggest that myostatin is a potent therapeutic target for interfering with osteoclast formation and joint destruction in RA.


Assuntos
Artrite Reumatoide/terapia , Diferenciação Celular , Miostatina/fisiologia , Osteoclastos/fisiologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Miostatina/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteogênese , Ligante RANK/farmacologia
3.
J Immunol ; 190(11): 5496-505, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23636057

RESUMO

Unraveling the mechanisms involved in chemotactic navigation of immune cells is of particular interest for the development of new immunoregulatory therapies. It is generally agreed upon that members of the classical transient receptor potential channel family (TRPC) are involved in chemotaxis. However, the regulatory role of TRPC channels in chemoattractant receptor-mediated signaling has not yet been clarified in detail. In this study, we demonstrate that the TRPC6 channels play a pronounced role in CXCR2-mediated intermediary chemotaxis, whereas N-formyl-methionine-leucine-phenylalanine receptor-mediated end-target chemotaxis is TRPC6 independent. The knockout of TRPC6 channels in murine neutrophils led to a strongly impaired intermediary chemotaxis after CXCR2 activation which is not further reinforced by CXCR2, PI3K, or p38 MAPK inhibition. Furthermore, CXCR2-mediated Ca(2+) influx but not Ca(2+) store release was attenuated in TRPC6(-/-) neutrophils. We demonstrate that the TRPC6 deficiency affected phosphorylation of AKT and MAPK downstream of CXCR2 receptor activation and led to altered remodeling of actin. The relevance of this TRPC6-depending defect in neutrophil chemotaxis is underscored by our in vivo findings. A nonseptic peritoneal inflammation revealed an attenuated recruitment of neutrophils in the peritoneal cavity of TRPC6(-/-) mice. In summary, this paper defines a specific role of TRPC6 channels in CXCR2-induced intermediary chemotaxis. In particular, TRPC6-mediated supply of calcium appears to be critical for activation of downstream signaling components.


Assuntos
Quimiotaxia/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Canais de Cátion TRPC/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Quimiotaxia/genética , Ativação Enzimática , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/deficiência , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Ann Rheum Dis ; 72(11): 1874-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23417988

RESUMO

OBJECTIVE: Based on previous data that have linked the small ubiquitin-like modifier-1 (SUMO-1) to the pathogenesis of rheumatoid arthritis (RA), we have investigated the expression of the highly homologous SUMO family members SUMO-2/3 in human RA and in the human tumour necrosis factor α transgenic (hTNFtg) mouse model of RA and studied their role in regulating disease specific matrixmetalloproteinases (MMPs). METHODS: Synovial tissue was obtained from RA and osteoarthritis (OA) patients and used for histological analyses as well as for the isolation of synovial fibroblasts (SFs). The expression of SUMO-2/3 in RA and OA patients as well as in hTNFtg and wild type mice was studied by PCR, western blot and immunostaining. SUMO-2/3 was knocked down using small interfering RNA in SFs, and TNF-α induced MMP production was determined by ELISA. Activation of nuclear factor-κB (NF-κB) was determined by a luciferase activity assay and a transcription factor assay in the presence of the NF-κB inhibitor BAY 11-7082. RESULTS: Expression of SUMO-2 and to a lesser extent of SUMO-3 was higher in RA tissues and RASFs compared with OA controls. Similarly, there was increased expression of SUMO-2 in the synovium and in SFs of hTNFtg mice compared with wild type animals. In vitro, the expression of SUMO-2 but not of SUMO-3 was induced by TNF-α. The knockdown of SUMO-2/3 significantly increased the TNF-α and interleukin (IL)-1ß induced expression of MMP-3 and MMP-13, accompanied by increased NF-κB activity. Induction of MMP-3 and MMP-13 was inhibited by blockade of the NF-κB pathway. TNF-α and IL-1ß mediated MMP-1 expression was not regulated by SUMO-2/3. CONCLUSIONS: Collectively, we show that despite their high homology, SUMO-2/3 are differentially regulated by TNF-α and selectively control TNF-α mediated MMP expression via the NF-κB pathway. Therefore, we hypothesise that SUMO-2 contributes to the specific activation of RASF.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , NF-kappa B/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Osteoartrite/metabolismo , Transdução de Sinais , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/genética , Ubiquitinas/fisiologia
5.
Arthritis Rheum ; 64(5): 1359-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22083543

RESUMO

OBJECTIVE: Integrin α2ß1 functions as a major receptor for type I collagen on different cell types, including fibroblasts and inflammatory cells. Although in vitro data suggest a role for α2ß1 integrin in regulating both cell attachment and expression of matrix-degrading enzymes such as matrix metalloproteinases (MMPs), mice that lack the α2 integrin subunit (Itga2(-/-) mice) develop normally and are fertile. We undertook this study to investigate the effect of Itga2 deficiency in 2 different mouse models of destructive arthritis: the antigen-induced arthritis (AIA) mouse model and the human tumor necrosis factor α (TNFα)-transgenic mouse model. METHODS: AIA was induced in the knee joints of Itga2(-/-) mice and wild-type controls. Human TNF-transgenic mice were crossed with Itga2(-/-) mice and were assessed clinically and histopathologically for signs of arthritis, inflammation, bone erosion, and cartilage damage. MMP expression, proliferation, fibroblast attachment, and ERK activation were determined. RESULTS: Under arthritic conditions, Itga2 deficiency led to decreased severity of joint pathology. Specifically, Itga2(-/-) mice showed less severe clinical symptoms and dramatically reduced pannus formation and cartilage erosion. Mice lacking α2ß1 integrin exhibited reduced MMP-3 expression, both in their sera and in fibroblast-like synoviocytes (FLS), due to impaired ERK activation. Further, both the proliferation and attachment of FLS to cartilage were partially dependent on α2ß1 integrin in vitro and in vivo. CONCLUSION: Our findings suggest that α2ß1 integrin contributes significantly to inflammatory cartilage destruction by promoting fibroblast proliferation and attachment and MMP expression.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Cartilagem Articular/patologia , Integrina alfa2beta1/deficiência , Sinovite/metabolismo , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Cartilagem Articular/metabolismo , Adesão Celular , Proliferação de Células , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Endogamia , Integrina alfa2beta1/genética , Masculino , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Joelho de Quadrúpedes/patologia , Sinovite/genética , Sinovite/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
6.
Cell Mol Life Sci ; 67(24): 4197-211, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20734104

RESUMO

Osteoarthritis is one of the most common forms of musculoskeletal disease and the most prominent type of arthritis encountered in all countries. Although great efforts have been made to investigate cartilage biology and osteoarthritis pathology, the treatment has lagged behind that of other arthritides, as there is a lack of effective disease-modifying therapies. Numerous approaches for dealing with cartilage degradation have been tried, but enjoyed very little success to develop approved OA treatments with not only symptomatic improvement but also structure-modifying effect. In this review we discuss the most recent findings regarding the regulation of cartilage biology and pathology and highlight their potential therapeutic values.


Assuntos
Cartilagem , Osteoartrite , Cartilagem/anatomia & histologia , Cartilagem/patologia , Cartilagem/fisiologia , Condrócitos/metabolismo , Citocinas/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Articulações/anatomia & histologia , Articulações/metabolismo , Articulações/patologia , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Osteoartrite/terapia , Regeneração/fisiologia
7.
Int J Biochem Cell Biol ; 42(10): 1594-601, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20603225

RESUMO

Osteoarthritis (OA) is a degenerative joint disease that is characterized primarily by progressive breakdown of articular cartilage. The loss of proteoglycans, the mineralization of the extracellular matrix (ECM) and the hypertrophic differentiation of the chondrocytes constitute hallmarks of the disease. The pathogenesis of OA includes several pathways, which in single are very well investigated and partly understood, but in their complex interplay remain mainly unclear. This review summarises recent data on the underlying mechanisms, specifically with respect to cell-matrix interactions and cartilage mineralization. It points out why these findings are of importance for future OA research and for the development of novel therapeutic strategies to treat OA.


Assuntos
Remodelação Óssea , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Osteoartrite/etiologia , Animais , Calcificação Fisiológica , Cartilagem Articular/patologia , Adesão Celular , Diferenciação Celular , Condrócitos/patologia , Humanos , Osteoartrite/patologia , Osteoartrite/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...